Partial Sampling Operator and Tree-Structural Distance for Multi-Objective GP

Makoto OHKI Tottori University, Japan

Program Synthesis

Function Generation

Rule Discovery

- Target of these application
 - → expressed by a tree structure.

Genetic Programming

1.Introduction

2. Partial Sampling

3.MOGP with SD

4. Verification

5.Conclusion

Effective Search **⇌** Bloat Control

- * Schema Theory for GP [Holland 1992]
- * Probabilistic Incremental Program Evolution [Salustowicz 1997]
- * Depth Limitation [Langdon 1999]
- * Size-Fair Model GP [Langdon 2000]
- * Grammar-Guided GP [Ratle 2000]
- * FREQT [Asai 2001]
- * Subtree Swapping Crossover [Poli 2003]
- * TAG₃P [Hoai 2004]
- * Tree Size Limitation [Ryan 2006]
- * Stochastic Grammar-based GP [Ratle 2006]
- * Semantic Building Blocks [McPhee 2008]
-

1.Introduction

2. Partial Sampling

3.MOGP with SD

4. Verification

Effective Search **⇌** Bloat Control

- * Schema Theory for GP [Holland 1992]
- * Probabilistic Incremental Program Evolution [Salustowicz 1997]
- * Depth Limitation [Langdon 1999]
- * Size-Fair Model GP [Langdon 2000]
- * Grammar-Guided GP [Ratle 2000]
- * FREQT [Asai 2002]
- * Subtree Swapping Crossover [Poli 2003]
- * TAG₃P [Hoai 2004]
- * Tree Size Limitation [Ryan 2006]
- * Stochastic Grammar-based GP [Ratle 2006]
- * Semantic Building Blocks [McPhee 2008]
-

1.Introduction

2. Partial Sampling

3.MOGP with SD

4. Verification

Effective Search **⇌** Bloat Control

- * Schema Theory for GP [Holland 1992]
- * Probabilistic Incremental Program Evolution [Salustowicz 1997]
- * Depth Limitation [Langdon 1999]
- * Size-Fair Model GP [Langdon 2000]
- * Grammar-Guided GP [Ratle 2000]
- * FREOT [Asai 2001]
- * Subtree Swapping Crossover [Poli 2003]
- * TAG₃P [Hoai 2004]
- * Tree Size Limitation [Ryan 2006]
- * Stochastic Grammar-based GP [Ratle 2006]
- * Semantic Building Blocks [McPhee 2008]
-

1.Introduction

2. Partial Sampling

3.MOGP with SD

4. Verification

Effective Search **⇌** Bloat Control

- * Schema Theory for GP [Holland 1992]
- * Probabilistic Incremental Program Evolution [Salustowicz 1997]
- * Depth Limitation [Langdon 1999]
- * Size-Fair Model GP [Langdon 2000]
- * Grammar-Guided GP [Ratle 2000]
- * FREQT [Asai 2001]
- * Subtree Swapping Crossover [Poli 2003]
- * TAG₃P [Hoai 2004]
- * Tree Size Limitation [Ryan 2006]
- * Stochastic Grammar-based GP [Ratle 2006]
- * Semantic Building Blocks [McPhee 2008]
-

1.Introduction

2. Partial Sampling

3.MOGP with SD

4. Verification

In this paper,

- Partial Sampling (PS) operator instead of Crossover and Mutation
- A technique of Multi-Objective GP by applying NSGA-II.
 - index of goodness of the tree
 - the Size of the tree
 - tree position in the population by Tree-Structural Distance (TSD)
- Apply TSD instead of Crowding Distance (CD) of NSGA-II.
- Double Spiral Problem for verification

1.Introduction

2. Partial Sampling

3.MOGP with SD

4. Verification

2. Partial Sampling Operator for Mating

Proliferation in Partial Sampling (PS) Operator

4.Verification

2. Partial Sampling Operator for Mating

igcup Proliferation Termination Probability $p_{_t}$

$$p_t^0 = \frac{1}{\text{AverageSize } \mathbf{R}^g},$$

$$p_t^{g+1} = \frac{\frac{1}{\text{Succeed } \mathbf{P}^g} - p_t^0}{\frac{1}{\text{Succeed } \mathbf{R}^g} - p_t^0} p_t^g - p_t^0 + p_t^0,$$

 \mathbf{R}^g : population at g-th generation

 \mathbf{P}^g : parent set at g-th generation

AverageSize • : average size of tree structure

Secceed • : average size of partial tree structure of set succeeded from previous generation

1.Introduction

2. Partial Sampling

3.MOGP with SD

4.Verification

2. Partial Sampling Operator for Mating

2 kinds of metastasis

5.Conclusion

4. Verification

1.Introduction

3 Objective Functions

① objective function according to Goodness of the tree structure

$$h_1(\text{indiv}_i) = \text{performance}(\text{root}_i)$$

2 objective function according to the size of the tree structure

$$h_2(\text{indiv}_i) = \frac{1}{\text{size}(\text{root}_i)}$$

③ objective function according to average of TSD in the population

2. Partial Sampling

3.MOGP with SD

4.Verification

5.Conclusion

 $h_3(\text{indiv}_i) = \frac{1}{N_{\text{pop}}} \sum_{k=1}^{N_{\text{pop}}} \text{TSD indiv}_i, \text{indiv}_k$

Tree-Structural Distance (TSD)

- 1.Introduction
- 2. Partial Sampling
- 3.MOGP with SD
- 4. Verification
- 5.Conclusion

Tree-Structural Distance (TSD)

1.Introduction

2. Partial Sampling

3.MOGP with SD

4. Verification

5.Conclusion

 $TSD(root_i, root_k) = \frac{1}{24} + \frac{1}{24} + \frac{1}{8} = \frac{5}{24}$

NSGA-II (conventional)

1.Introduction

2. Partial Sampling

3.MOGP with SD

4. Verification

10th International Joint Conf. on Computational Intelligence, Seville, Spain, September 18-20, 2018 14 5.Conclusion

 \mathbf{R}^g : population

 \mathbf{P}^g : parents

NSGA-II with TSD instead of CD

1.Introduction

2. Partial Sampling

3.MOGP with SD

4. Verification

5.Conclusion

10th International Joint Conf. on Computational Intelligence, Seville, Spain, September 18-20, 2018 15

 \mathbf{P}^g : parents

$$\begin{cases} f(x,y) > 0 \Leftrightarrow (x,y) \in \mathbf{D}_1 \\ f(x,y) < 0 \Leftrightarrow (x,y) \in \mathbf{D}_2 \\ f(x,y) = 0 \Leftrightarrow \text{FALSE} \end{cases}$$

difficult even by the neural network.

- o non-terminal node ∈ +,-,*,÷,sin,cos,tan, \underline{ifltz} o terminal node ∈ x, y, constant
 - ifltz $(a,b,c) \triangleq if \ a < 0 \text{ then } b \text{ else } c$

$$= \begin{cases} b & (a < 0) \\ c & (\text{otherwise}) \end{cases}$$

1.Introduction

2. Partial Sampling

3.MOGP with SD

4. Verification

5.Conclusion

lacksquare Objective function h_1 according to the goodness of tree

$$h_{\mathrm{l}}(\mathrm{indiv}_{i}) = \mathrm{performance}(\mathrm{root}_{i}) = \frac{1}{\left|\mathbf{D}_{1} \cup \mathbf{D}_{2}\right|} \sum_{k=1}^{\left|\mathbf{D}_{1} \cup \mathbf{D}_{2}\right|} \underbrace{g(x_{k}, y_{k})}_{g(x, y)}$$

$$g(x, y) = \begin{cases} 1 & f(x, y) > 0 \land (x, y) \in \mathbf{D}_{1}, \\ 0 & f(x, y) > 0 \land (x, y) \in \mathbf{D}_{2}, \\ 1 & f(x, y) < 0 \land (x, y) \in \mathbf{D}_{2}, \\ 0 & f(x, y) < 0 \land (x, y) \in \mathbf{D}_{1}, \\ 0 & f(x, y) = 0 \end{cases}$$

1.Introduction

2. Partial Sampling

3.MOGP with SD

4. Verification

5. Conclusion

Final Solution Distribution

1.Introduction

2. Partial Sampling

3.MOGP with SD

4. Verification

5.Conclusion

Comparison among 3-Objective, 2-Objective, 1-Objective GPs

with SD

1.Introduction

2. Partial Sampling

3.MOGP with SD

4. Verification

Comparison of results on MS-Norm plane

1.Introduction

2. Partial Sampling

3.MOGP with SD

4. Verification

5.Conclusion

5. Conclusion

In this paper,

- Multi-Objective GP
- In addition to goodness of the tree, 2 objective functions
 - tree size
 - Tree-Structural Distance (TSD)
- Partial Sampling (PS) for mating
- Double Spiral Problem for verification.
- \bigcirc The proposed technique (PS + TSD \rightarrow NSGA-II) is effective.

- 1.Introduction
- 2. Partial Sampling
- 3.MOGP with SD
- 4. Verification
- 5. Conclusion

5. Conclusion

In the future,

- Enhance the capability of numerical optimization
- Ranking Selection technique harmonizing CD and TSD
- Mechanism to forcibly exit from PS

1.Introduction

2. Partial Sampling

3.MOGP with SD

4. Verification

Thank you very much!

Ask me simply, even if you have.

MS and Norm

degree of spread of \mathcal{FFS}

$$MS = \sqrt{\sum_{i=1}^{m} { |\mathcal{FFS}| \atop \max_{j=1}^{|\mathcal{FFS}|} f_i(\mathbf{x}_j) - \min_{j=1}^{|\mathcal{FFS}|} f_i(\mathbf{x}_j) }^2}$$

degree of convergence to POS

Norm =
$$\frac{1}{|\mathcal{FFS}|} \sum_{j=1}^{|\mathcal{FFS}|} \sqrt{\sum_{i=1}^{m} f_i(\mathbf{x}_j)^2}$$

Program Synthesis [David2017]

solution

```
let rec sum_even x =
match x with
| Nil -> 0
| Cons (u, Nil) -> u
| Cons (u, Cons(_, us)) -> u + sum_even us
```

Applications of Genetic Programming (GP)

- Program Synthesis
- · Function Generation
- · Rule Set Discovery

.

Function Generation [Jamali2017]

• Rule Set Discovery [Ohmoto2013]

They can be expressed by a tree structure data.

Genetic Programming: GP

